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By improving the long-term correlation tracking (LCT) algorithm, an effective object tracking method, im-
proved LCT (ILCT), is proposed to address the issue of occlusion. If the object is judged being occluded by
the designed criterion, which is based on the characteristic of response value curve, an added re-detector will
perform re-detection, and the tracker is ordered to stop. Besides, a filtering and adoption strategy of re-detection
results is given to choose the most reliable one for the re-initialization of the tracker. Extensive experiments are
carried out under the conditions of occlusion, and the results demonstrate that ILCT outperforms some state-of-
the-art methods in terms of accuracy and robustness.
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Nowadays, object tracking is one of the hot topics in com-
puter vision and has been widely used in many engineering
applications, such as satellites[1], inverse synthetic aper-
ture radar[2], and reconnaissance[3]. A typical scenario of
object tracking is to track an unknown object initialized
by a bounding box in subsequent image frames[4,5]. How
to realize a robust tracker against significant appearance
change is still an issue to be addressed.
In recent years, many robust trackers based on correla-

tion filters were proposed, in which the minimum output
sum of squared error (MOSSE) filter[6] is the well-known
one because of its high speed and novelty. It introduced
correlation operation[7] into object tracking and greatly ac-
celerated the calculation through the theory that convolu-
tion in the spatial domain becomes the Hadamard product
in the Fourier domain[8]. After that, the circulant structure
of tracking-by-detection with kernels (CSK)[9] employed
the circulant matrix originally to increase the number of
samples that improved the classifier. Then, histogram of
oriented gradients (HOG) features, Gaussian kernels,
and ridge regression are used in the kernelized correla-
tion filters (KCFs)[10] based on CSK, which has achieved
satisfactory tracking results. Danelljan et al.mainly solved
the issue of scale variation (SV) during an object’s
movement by their discriminative scale space tracking
(DSST)[11], which is based on learning the correlation filters
by a scale pyramid. Ma et al. proposed long-term correla-
tion tracking (LCT)[4], which comprises the correlation fil-
ters of appearance and motion to estimate the scale and
translation of an object. It is an outstanding tracker for
long-term tracking. Inspired by the model of human’s rec-
ognition, Choi et al. proposed the attentional feature-based
correlation filter (AtCF)[12] to perform object tracking that
can adapt to the fast variation of the object.
However, these trackers do not handle occlusion (OCC)

well or only aim at partial OCC (50% coverage or less) and

temporal full OCC. A robust tracking algorithm requires a
detection module to recover the target from potential
tracking failures caused by heavy OCC[13]. Because LCT
is designed for long-term tracking, we improved it to han-
dle OCC and named it improved LCT (ILCT).

ILCT uses the motion correlation filter w1 and appear-
ance correlation filter w2 of LCT to estimate the position
and scale of an object. An OCC criterion is designed ac-
cording to the response value curve of the correlation filter
to determine whether the object is occluded or not. If the
object is occluded, the added re-detector works, and
the tracker stops. The reliable re-detection result will
re-initialize the tracker. The principles and experimental
results are explained below.

LCT decomposes the tracking task into translation
estimating (to get a new position) and scale estimating
(to get a new scale)[4]. The process is realized by motion
correlation filter w1 and appearance correlation filter
w2, respectively.

This filter, w1, is trained on image patch x, whose size is
M × N by circular shifts of its pixels xm;n, where ðm; nÞ ∈
f0; 1;…;M − 1g× f0; 1;…;N − 1g as training samples[9].
Using the ridge regression to minimize the mean square
error between the training images and regression object,
then the filter w1 ∈ RM×N is obtained by

w1 ¼ argmin
w1

X
m;n

jϕðxm;nÞ·w1 − yðm; nÞj2 þ λjw1j2; (1)

where Gaussian kernel kðx; x0Þ ¼ expð−jx− x0j2∕σ2Þ is
used to define mapping ϕ as kðx; x0Þ ¼ ϕðxÞ·ϕðx0Þ.
According to the distance of shift, yðm; nÞ gives the
Gaussian label to the training image that the value is close
to 1 if there is less distance. λ is the regulation parameter.

After mapping and fast Fourier transform (FFT) F, the
solution of w1 can be represented as the linear combination
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of training samples w1 ¼
P

m;naðm; nÞϕðxm;nÞ, where the
coefficient a is given by

A ¼ FðaÞ ¼ FðyÞ
F½ϕðxÞ·ϕðxÞ� þ λ

: (2)

When new frame comes, the filter will perform correla-
tion on the new patch z around the last location. Then, the
correlation response map can be calculated by

ŷ ¼ F−1fA⊙F½ϕðzÞ·ϕðx̂Þ�g; (3)

where x̂ denotes the learned appearance model, F−1 is the
inverse FFT, and ⊙ is elementwise multiplication. The
value of ŷ is between 0 and 1, and the location that owns
the highest ŷ is the position of the object.
The filter w2 shares the same principle of w1. In the

process of estimating the scale, the patch after translating
estimation is divided into K scales:

S ¼
�
ak jk ¼

�
−
K − 1

2

�
;

�
−
K − 3

2

�
;…;

�
K − 1

2

��
: (4)

Each scale has its size of sM × sNðs ∈ SÞ, and HOG fea-
tures are extracted on each one to build the scale pyramid.
As in Eq. (5), we can get the response value of each layer in
the pyramid and select the patch that owns the highest
value as the object scale ŝ:

ŝ ¼ argmax
s

½maxðŷ1Þ;maxðŷ2Þ;…;maxðŷsÞ�: (5)

Therefore, the accepted tracking result of LCT must
have two highest response values, i.e., the response values
of w1 and w2. The final response map (refers to the map of
w2, the same as below) is shown in Fig. 1(a).
The motion correlation filter w1 and appearance model

x follow the updated framework with the learning rate α
by Eq. (6). The appearance model is trained by the feature
vector xwith a 47 channels feature[14], which includes HOG
features with 31 bins, eight bins of histogram feature of
intensity, and eight bins of non-parametric local rank

transformation[15] of the brightness channel. A threshold
is set for the appearance correlation filter w2 such that
if maxðŷsÞ ≥ τa, w2 will be updated in the same way:

x̂t ¼ ð1− αÞx̂t−1 þ αxt ;

Ât ¼ ð1− αÞÂt−1 þ αAt : (6)

Adopting the tracking-by-detection framework is also
the critical factor showing that LCT is robust for SV,
illumination variation (IV), background clutters (BCs),
fast motion (FM), etc. An online support vector machine
(SVM) classifier is used for recovering targets, and the
color channels are quantized as features for detector learn-
ing[16]. The intersection over union (IOU) thresholds for
positive training samples and negative ones are 0.5 and
0.1, respectively. Another threshold τr is set to activate
it when maxðŷsÞ < τr .

In addition, the cosine window is used in translating
estimation to remove the boundary discontinuities of
the response map[6].

The tracking result is adopted according to the values of
response maps. If the object is intact and undisturbed, the
response map is clear, and the white point is obvious. On
the contrary, the map is dim, and the point is obscure, for
example, when OCC occurs, as shown in Fig. 1(b).

When the OCC begins, the tracker may still locate the
object successfully based on previous training. However,
as time goes on, the coverage increases, which aggravates
the correlation filter so that the tracker will fail to re-track
the object after its quitting from OCC.

To design an OCC criterion, several sequences[17] with dif-
ferent attributes, including full/partial OCC, deformation
(DEF), BCs, FM, IV, and SV, are studied. In each sequence,
we selected five frames, f ¼ ff t−4; f t−3; f t−2; f t−1; f tg, which
reflect the attribute and their corresponding response values
y ¼ fyt−4; yt−3; yt−2; yt−1; ytg to draw the curve, as shown
in Fig. 2.

In Fig. 2(a), because of the occluder, the response values
decrease, while there are obvious rises in the last five curves.
So, the first condition of criterion we set is that the five re-
sponse values of five consecutive frames decrease continu-
ously. Unlike partial OCC and DEF, the response values
decrease drastically due to the full cover on the object by
the occluder. Accordingly, the second condition will be
reached if yt−4 is τ1 larger than yt . To ensure the accuracy
of judgement, the third condition is the number of elements
in y that are less than τ2 is greater than two. The total three
conditions of criterion are summarized below:

(1) yt−4 > yt−3 > yt−2 > yt−1 > yt ,
(2) yt−4 − yt ≥ τ1,
(3) y0 ¼ fy0jyt−4 < τ2; yt−3 < τ2; yt−2 < τ2; yt−1 <

τ2; yt < τ2g; jy0j ≥ 2.

When the OCC criterion triggers, we set five free frames
so that no operation is carried out on these frames to
(1) let the object be fully occluded, (2) avoid the filters
being polluted, and (3) improve the real time.

Fig. 1. Response maps. (a) Object is intact; (b) object is
occluded.
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For convenience, we name the frame and the time
at which it reaches the OCC criterion as f occ and tocc,
i.e., f ¼ ff occ−4; f occ−3; f occ−2; f occ−1; f occg, to meet the
three conditions. When the object is identified as oc-
cluded, the tracker is ordered to stop, the two filters
are no longer updated, and the re-detector is activated.
In the re-detection module, we implement the edge
boxes[18] to finish this task. Different from other methods
of object detection[19], which use sliding windows that con-
sume a large amount of calculation resources, this method
efficiently generates object bounding box proposals di-
rectly from edges (about 1000 proposals/0.25 s). Its core
idea is that the edge of an object corresponds to its con-
tour, and the number of contours wholly enclosed by a
bounding box is indicative of the likelihood of the box
containing an object. In final, each proposed bounding
box has a confidence value that reflects the likelihood
of an object. More details can be found in Ref. [18].
In an image with a complex background, a huge number

of proposal bounding boxes may be obtained, which takes
more computation time, and most of them are not the ob-
ject bounding boxes we want. So, a threshold is set that k
top-ranked proposals are accepted.
While among these k boxes, false results also exist. Con-

sidering the SV before and after OCC, a constraint con-
dition is added to filter the unreasonable boxes:

1.5−1 × bf occ−4
w < bw < 1.5 × bf occ−4

w ;

1.5−1 × bf occ−4
h < bh < 1.5 × bf occ−4

h ; (7)

where bf occ−4
w and bf occ−4

h are the width and height of the
bounding box of frame f occ−4. An example is shown in
Fig. 3, where k ¼ 500 is set, and the number of bounding
boxes after filtering is k0 ¼ 38.

In our algorithm, w1 of f occ−4 is implemented on those
patches of the final proposed bounding boxes to get the
estimated positions. Then, scale estimation is performed
by the w2 of f occ−4, and k0 response values are obtained.
The detection result will be adopted if the highest value
reaches the confidence threshold τ3. Finally, the result will
re-initialize the tracker by giving the new position.

The whole flowchart of our method is shown in Fig. 4.
To demonstrate the performance of the improved

tracker, experiments are performed on eight sequences
with the attributes of OCC, etc. Eight state-of-the-art
trackers are compared with ILCT. They are KCF[10],
LCT[4], DSST[11], tracking-learning-detection (TLD)[20],
structured output tracking with kernels (Struck)[21], L1
tracker using the accelerated proximal gradient approach
(L1APG)[22], integrated CSK (ICSK)[23], and compressive
tracking (CT)[24], in which the former three are correlation-
based trackers, and the rest are also effective trackers
to account for OCC[17]. Besides, for better comparison,
first, KCF is improved by the proposed OCC criterion
triggers and recovery mechanism, named IKCF. Second,
we replace two triggers used in MOSSE[6] and TLD[20],
i.e., peak-to-sidelobe ratio (PSR) and median flow (MF)
with the proposed one of ILCT, respectively, named
LCT-PSR and LCT-MF. The experimental environment
is Intel I7-6500U 2.5 GHz CPU with 8.00G RAM,
MATLAB 2016b.

The annotated attributes of the eight sequences include
OCC, FM, moving camera (MC), SV, BCs, IV, DEF,
out-of-plane rotation (OPR), and motion blur (MB).
Their information is listed in Table 1. The triumphal arch
sequence is taken by us.

The parameters of the LCT part are set to the default
values: λ ¼ 10−4, the size of the search window for trans-
lation estimation is set to 1.8 times the target size, the
Gaussian kernel width σ ¼ 0.1, learning rate α ¼ 0.01,
the number of scale space jS j ¼ 21, the scale factor
a ¼ 1.08, τr ¼ 0.25 for the activation of SVM, τt ¼ 0.5
for the adoption of the SVM result, and τa ¼ 0.5 is set
as the threshold for the model update[4].

In the OCC criterion, τ1 and τ2 are not fixed and are set
to a quarter and a half of the response value of the second
frame (the first frame has no correlations, and the object is
selected manually), respectively.

In the re-detector, we use the default parameters of
edge boxes[18] and set k ¼ 200. τ3 is set to 0.8 times of
yocc−4. The rest of the trackers are used with their default
parameters.

The tracking results of 12 trackers are shown in Fig. 5.

Fig. 2. Curves of response values with different attributes.
(a) Full OCC; (b) DEF; (c) partial OCC; (d) BCs; (e) FM;
(f) IV; (g) SV. (Best view in PDF.)

Fig. 3. Detection for proposal boxes. (a) Bounding box of object;
(b) k top-ranked proposals; (c) k0 proposals.
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Through Fig. 5, we can see that these objects undergo
obvious full OCC. Most trackers drift to background after
OCC, while ILCT tracks objects robustly.
Center location error (CLE) is used for quantitative

evaluation, which is defined as the percentage of frames
whose Euclidean distance r between the centers of the

bounding box and ground truth is within a pixel threshold
(we set 15 pixels). In addition, for fair comparison, the
frames with OCC are discarded, i.e., only the frames with
objects in view are compared.

The results of CLE are listed in Table 2 (the best result
is in bold, and the second best one is underlined). ILCT
has shown its capacity of resisting disturbance in Fig. 5.
Table 2 also indicates this. Because ILCT does not loose
objects in all experiments, its CLE results are satisfactory.
In terms of the number of the best and second best, ILCT
achieves four and three times, respectively. From the
evaluation results of CLE, we can consider ILCT as the
best tracker.

From Table 2, compared to KCF, we can see that IKCF
achieves great progress in tracking results because of the
improvement, which reflects the effectiveness of our
method. The proposed trigger outperforms PSR and
MF because they are calculated in one frame, which
may be triggered by non-OCC factors such as DEF
and SV.

In conclusion, an effective tracking method that can
handle OCC is proposed. Based on the motion and appear-
ance correlation filters of LCT, ILCT employs a designed
OCC criterion and a re-detector to judge the OCC and

Fig. 4. Flowchart of ILCT. (Best view in PDF.)

Table 1. Information of Eight Sequences

Video Name
Number of
Frames Attributes

Carchase1[25] 71 OCC, FM, MC

Road[26] 52 OCC, BC, FM, MC, SV

Carchase2[27] 150 (1st-150th) OCC, FM, IV, MC

Group[26] 86 OCC, DEF, MC

Motorcycle[28] 156 OCC, FM, MB, MC, SV

Triumphal
arch

331 OCC, DEF, OPR, SV

Jogging[17] 307 OCC, DEF, OPR

Wandering[26] 285 OCC, DEF, MC

COL 17(3), 031001(2019) CHINESE OPTICS LETTERS March 10, 2019

031001-4



perform re-detection, respectively. Once the object is iden-
tified as occluded, the tracker stops, and the re-detector is
activated. Then, the detection result with high confidence
will re-initialize the tracker. Extensive experiments have
been performed, and the results of qualitative and quan-
titative evaluation indicate that ILCT outperforms some
state-of-the-art trackers in terms of accuracy and robust-
ness. In future work, the efficiency and real-time perfor-
mance have to be addressed to make the tracker perfect.
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